Fourier Approximation and Hausdorff Convergence ${ }^{1}$

A. van Rooij
Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands
and
F. H. Ruymgaart
Texas Tech University, Lubbock, Texas 79409-1042
Communicated by Vilmos Totik

Received April 2, 1998; accepted in revised form June 2, 2000;
published online October 11, 2000

For a function f on \mathbb{R}^{d} we consider its Fourier transform $\mathscr{F} f$ and the (integrable) Cesáro averages $\overline{\mathscr{F}}_{M} f$ of suitable truncations of $\mathscr{F} f$, described by the formula $\left(\overline{\mathscr{F}}_{M} f\right)(a)=M^{-d}\left(M-\left|a_{1}\right|\right)^{+} \ldots\left(M-\left|a_{d}\right|\right)^{+}(\mathscr{F} f)(a)$. We study the speed of the convergence $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f \rightarrow f,(M \rightarrow \infty)$, under a metric that is somewhere between the L^{1} - and the L^{∞}-metrics. In this metric (which is appropriate to problems of pattern recognition), the distance between two functions is, more or less, the Hausdorff distance between their graphs. We describe a class of functions f for which the distance between $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ and f is $\mathcal{O}\left(M^{-1 / 2}\right)$, the fastest rate of converges one can have for discontinuous f. © 2000 Academic Press

1. INTRODUCTION

For an integrable function f on \mathbb{R}^{d} we define its Fourier transform, $\mathscr{F} f$, and its inverse Fourier transform, $\mathscr{F}^{-1} f$, by:

$$
\begin{aligned}
(\mathscr{F} f)(a) & :=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x) e^{i\langle x, a\rangle} d x, \\
\left(\mathscr{F}^{-1} f\right)(a) & :=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x) e^{-i\langle x, a\rangle} d x
\end{aligned}
$$

[^0]If $\mathscr{F} f$ is integrable, f may be recuperated from $\mathscr{F} f$ by the formula $f=\mathscr{F}^{-1} \mathscr{F} f$. In general, $\mathscr{F}^{-1} \mathscr{F} f$ does not exist, but one may consider the truncations $\mathscr{F}_{m} f$ where $m=\left(m_{1}, \ldots, m_{d}\right) \in(0, \infty)^{d}$, defined by

$$
\left(\mathscr{F}_{m} f\right)(a):= \begin{cases}(\mathscr{F} f)(a) & \text { if }\left|a_{1}\right| \leqslant m_{1}, \ldots,\left|a_{d}\right| \leqslant m_{d}, \\ 0 & \text { if not },\end{cases}
$$

and their Cesàro averages $\overline{\mathscr{F}}_{M} f(M>0)$:

$$
\left(\overline{\mathscr{F}}_{M} f\right)(a)=M^{-d} \int_{0}^{M} \cdots \int_{0}^{M}\left(\mathscr{F}_{m} f\right)(a) d m_{1} \cdots d m_{d} .
$$

One then has $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f \rightarrow f(M \rightarrow \infty)$ in the sense of $L^{1}\left(\mathbb{R}^{d}\right)$.
Our goal is to study the speed of convergence, where, however, we do not use the L^{1}-metric but a less conventional distance concept that somewhat resembles the Skorohod metric.

The idea behind this approach originates in problems of pattern recognition. There, typically, f is the indicator of a set X that one wants to reconstruct (approximately) from $\mathscr{F} f$ or its truncations, $\mathscr{F}_{m} f$. The L^{1}-approximation mentioned above is sometimes too rough, as $\mathscr{F}_{m} f$ tends to ignore small pieces of X. In such cases, one would prefer uniform approximation, but $\mathscr{F}^{-1} \mathscr{F}_{m} f$ and $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ are continuous and therefore cannot converge uniformly to f. What one can do is consider the graph of $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f\left(\right.$ in $\left.\mathbb{R}^{d} \times \mathbb{R}\right)$ and observe that, for large M, it closely resembles the set $\bar{\Gamma}_{f}$ obtained from the graph of f by adding all points (x, t) where x lies in the boundary of the set X and t lies in the interval [0, 1]. If X is not too wild, for sufficiently large M every point of the graph of $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ is close to $\bar{\Gamma}_{f}$, and vice versa. (Owing to the Gibbs phenomenon, $\mathscr{F}^{-1} \mathscr{F}_{m} f$ instead of $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ will not do.) This idea leads to the introduction of a metric on a certain class of closed subsets of $\mathbb{R}^{d} \times \mathbb{R}$, analogous to the Hausdorff metric on the class of all compact subsets. From this metric we obtain a pseudometric $d_{\mathscr{H}}$ on the set of all bounded functions on \mathbb{R}^{d}. To some extent, this $d_{\mathscr{H}}$ behaves like the uniform metric (indeed, it is equivalent to the uniform metric on the set of all uniformly continuous bounded functions). On the other hand, in the sense of $d_{\mathscr{P}}$ the functions $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ tend to f if, say, f is the indicator of a bounded regularly closed set.

Our main purpose is to study speed of convergence. In Theorem 4.2 we describe a large class of functions f for which $d_{\mathscr{H}}\left(\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f, f\right)=\mathcal{O}\left(M^{-1 / 2}\right)$ $(M \rightarrow \infty)$. At the end of the paper we show that, for indicators of nonempty bounded sets, one cannot have faster convergence.

2. THE PSEUDOMETRIC

Let f be a bounded function on \mathbb{R}^{d}. We denote its graph by Γ_{f} and define

$$
\begin{align*}
\Gamma_{f, l} & :=\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: t \leqslant f(x)\right\}, \tag{2.1}\\
\Gamma_{f, u} & :=\left\{(x, t) \in \mathbb{R}^{d} \times \mathbb{R}: t \geqslant f(x)\right\} .
\end{align*}
$$

(These sets are sometimes called the hypograph and the epigraph of f.) The extended graph of f,

$$
\begin{equation*}
\bar{\Gamma}_{f} \tag{2.2}
\end{equation*}
$$

is the intersection of the closures of $\Gamma_{f, l}$ and $\Gamma_{f, u}$. It is also the boundary of $\Gamma_{f, l}$ and of $\Gamma_{f, u}$. It is a closed subset of \mathbb{R}^{d}, containing the graph of f. If f happens to be continuous, $\bar{\Gamma}_{f}$ is the graph of f. If f is the indicator of a set $X \subset \mathbb{R}^{d}$, then

$$
\begin{equation*}
\bar{\Gamma}_{f}=\Gamma_{f} \cup(\partial X \times[0,1]), \tag{2.3}
\end{equation*}
$$

∂X being the boundary of X.
For two bounded functions, f and g, on \mathbb{R}^{d} we define

$$
\begin{equation*}
d_{\mathscr{H}}(f, g) \tag{2.4}
\end{equation*}
$$

to be the Hausdorff distance of $\bar{\Gamma}_{f}$ and $\bar{\Gamma}_{g}$, i.e., the infimum of all positive numbers r with the property

$$
\begin{align*}
& z \in \bar{\Gamma}_{f} \Rightarrow \text { there is a } w \in \bar{\Gamma}_{g} \text { with }\|z-w\|<r, \\
& w \in \bar{\Gamma}_{g} \Rightarrow \text { there is a } w \in \bar{\Gamma}_{f} \text { with }\|z-w\|<r, \tag{2.5}
\end{align*}
$$

obtaining a pseudometric $d_{\mathscr{H}}$ on the set of all bounded functions.
It is clear that uniform convergence implies $d_{\mathscr{H}}$-convergence. For uniformly continuous functions, the converse is also true. In fact, we have:

Lemma 2.1. Let f_{1}, f_{2}, \ldots be bounded functions on \mathbb{R}^{d}, let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be bounded and uniformly continuous. Then

$$
d_{\mathscr{H}}\left(f_{n}, f\right) \rightarrow 0 \quad \Leftrightarrow \quad f_{n} \rightarrow f \text { uniformly. }
$$

Proof. One implication is obvious, as $d_{\mathscr{H}}\left(f_{n}, f\right) \leqslant\left\|f_{n}-f\right\|_{\infty}$ for all n. Now assume $d_{\mathscr{H}}\left(f_{n}, f\right) \rightarrow 0$. Let $\varepsilon>0$. Choose $\delta \in(0, \varepsilon / 2]$ such that $|f(x)-f(y)| \leqslant \varepsilon / 2$ as soon as $x, y \in \mathbb{R}^{d},\|x-y\| \leqslant \delta$. For sufficiently large n, we have $d_{\mathscr{H}}\left(f_{n}, f\right)<\delta$. For such n and for any $a \in \mathbb{R}^{d}$ there is a $b \in \mathbb{R}^{d}$ with $\left\|\left(a, f_{n}(a)\right)-(b, f(b))\right\|<\delta$; then certainly $\|a-b\|<\delta$ and $\left|f_{n}(a)-f(b)\right|$ $<\delta$, whence $|f(a)-f(b)|<\varepsilon / 2$ and $\left|f_{n}(a)-f(a)\right|<\delta+\varepsilon / 2 \leqslant \varepsilon$.

For practically obtaining estimates of $d_{\mathscr{H}}(f, g)$ the following observation is occasionally useful. Write

$$
\bar{B}^{(d+1)}:=\left\{(x, \lambda) \in \mathbb{R}^{d} \times \mathbb{R}:\|x\| \leqslant 1,|\lambda| \leqslant 1\right\}
$$

and for $r>0$ put $r \bar{B}^{(d+1)}:=\left\{r z: z \in \bar{B}^{(d+1)}\right\}$. If f and g are bounded functions on \mathbb{R}^{d} and $r>0$, then

$$
\begin{align*}
& d_{\mathscr{H}}(f, g)<r \quad \Rightarrow \quad \bar{\Gamma}_{f} \subset \bar{\Gamma}_{g}+r \bar{B}^{(d+1)} \text { and } \bar{\Gamma}_{g} \subset \bar{\Gamma}_{f}+r \bar{B}^{(d+1)}, \tag{2.6}\\
& \bar{\Gamma}_{f} \subset \bar{\Gamma}_{g}+r \bar{B}^{(d+1)} \text { and } \bar{\Gamma}_{g} \subset \bar{\Gamma}_{f}+r \bar{B}^{d+1} \quad \Rightarrow \quad d_{\mathscr{H}}(f, g) \leqslant 2 r .
\end{align*}
$$

For our results on $d_{\mathscr{H}}$-convergence of $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ to f we need the following two facts.

Lemma 2.2. Let f be a bounded function on \mathbb{R}^{d}; let $a \in \mathbb{R}^{d}, r>0$ and put

$$
\lambda:=\inf _{\|x-a\|<r} f(x), \quad \mu:=\sup _{\|x-a\|<r} f(x) .
$$

Then for every $t \in(\lambda-r, \mu+r)$ we have

$$
(a, t) \in \bar{\Gamma}_{f}+r \bar{B}^{(d+1)} .
$$

Proof. Put $B_{r}(a):=\left\{x \in \mathbb{R}^{d}:\|x-a\|<r\right\}$. Let $t \in(\lambda-r, \mu+r)$. Choose a number s in the interval $[t-r, t+r] \cap(\lambda, \mu)$. Then the sets $X_{-}:=$ $\left\{x \in B_{r}(a): f(x) \leqslant s\right\}$ and $X_{+}:=\left\{x \in B_{r}(a): f(x) \geqslant s\right\}$ both are nonempty. There exists a point z of $B_{r}(a)$ that lies in the closure of both X_{-}and X_{+}. Choose a sequence x_{1}, x_{2}, \ldots in X_{-}, converging to z and such that $s_{-}:=\lim f\left(x_{n}\right)$ exists. Then $s_{-} \leqslant s$ and $\left(z, s_{-}\right)$lies in the closure of Γ_{f}, hence in $\bar{\Gamma}_{f}$. Similarly, there is an $s_{+} \geqslant s$ with $\left(z, s_{+}\right) \in \bar{\Gamma}_{f}$. Thus, $(z, s) \in \bar{\Gamma}_{f}$ and

$$
(a, t) \in(z, s)+r \bar{B}^{(d+1)} \subset \bar{\Gamma}_{f}+r \bar{B}^{(d+1)} .
$$

Lemma 2.3. Let f, g be bounded functions on \mathbb{R}^{d}. Let $r>0$ and

$$
\Gamma_{f} \subset \bar{\Gamma}_{g}+r \bar{B}^{(d+1)} .
$$

Then

$$
\bar{\Gamma}_{f} \subset \bar{\Gamma}_{g}+r \bar{B}^{(d+1)} .
$$

Proof. Let $(a, t) \in \bar{\Gamma}_{f}$. First, take any $\varepsilon>0$. Put

$$
\lambda:=\inf \left\{g(z): z \in B_{r+2 \varepsilon}(a)\right\}, \quad \mu:=\sup \left\{g(z): z \in B_{r+2 \varepsilon}(a)\right\},
$$

$B_{r+2 \varepsilon}(a)$ being the open ball in \mathbb{R}^{d} with center at a and radius $r+2 \varepsilon$.
(a, t) lies in the closure of $\Gamma_{f, l}$, so there is an $x \in \mathbb{R}^{d}$ with $\|x-a\|<\varepsilon$, $t<f(x)+\varepsilon$. There is a $(y, s) \in \bar{\Gamma}_{g}$ such that $\|x-y\| \leqslant r$ and $|f(x)-s| \leqslant r$. As (y, s) lies in the closure of $\Gamma_{g, l}$, there is a $z \in \mathbb{R}^{d}$ with $\|y-z\|<\varepsilon$, $s<g(z)+\varepsilon$. Then $\|z-a\|<r+2 \varepsilon$ and $t<g(z)+r+2 \varepsilon \leqslant \mu+r+2 \varepsilon$.

Similarly, $t>\lambda-r-2 \varepsilon$. Thus, by Lemma 2.2,

$$
(a, t) \in \bar{\Gamma}_{g}+(r+2 \varepsilon) \bar{B}^{(d+1)} .
$$

The above formula is valid for all $\varepsilon>0$. Then, by compactness and because $\bar{\Gamma}_{g}$ is closed,

$$
(a, t) \in \bar{\Gamma}_{g}+r \bar{B}^{(d+1)} .
$$

3. THE PROBLEM

Let f be an integrable function on \mathbb{R} and let $\mathscr{F}^{\prime}, \mathscr{F}^{-1}, \mathscr{F}_{m}, \overline{\mathscr{F}}_{M}$ be as in the Introduction. Then for all $M>0$ and $a \in \mathbb{R}^{d}$ we obtain

$$
\begin{align*}
\left(\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f\right)(a)= & (2 \pi)^{-d} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(x) e^{i\langle x, t\rangle} \\
& \times \prod_{k=1}^{d}\left(1-\frac{\left|t_{k}\right|}{M}\right)^{+} e^{-i\langle a, t\rangle} d x d t . \tag{3.1}
\end{align*}
$$

The substitution $x=a+\frac{y}{M}, t=M s$ yields

$$
\begin{align*}
\left(\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f\right)(a)= & (2 \pi)^{-d} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f\left(a+\frac{y}{M}\right) \\
& \times \prod_{k=1}^{d}\left(1-\left|s_{k}\right|\right)^{+} e^{i\langle y, s\rangle} d y d s . \tag{3.2}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left(\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f\right)(a)=\int_{\mathbb{R}^{d}} f\left(a+\frac{x}{M}\right) S(x) d x, \tag{3.3}
\end{equation*}
$$

where, for all $x \in \mathbb{R}^{d}$,

$$
\begin{align*}
S(x): & =(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \prod_{k=1}^{d}\left(1-\left|s_{k}\right|\right)^{+} e^{i\langle x, s\rangle} d s \\
& =(2 \pi)^{-d} \prod_{k=1}^{d} \int_{\mathbb{R}}\left(1-\left|s_{k}\right|\right)^{+} e^{i x_{k} s_{k}} d s_{k} \\
& =\prod_{k=1}^{d} \sigma\left(x_{k}\right) \tag{3.4}
\end{align*}
$$

the function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ being defined by

$$
\sigma(\xi):= \begin{cases}\frac{1}{\pi} \frac{1-\cos \xi}{\xi^{2}} & \text { if } \xi \neq 0 \tag{3.5}\\ \frac{1}{2 \pi} & \text { if } \xi=0\end{cases}
$$

Formula (3.4) determines a continuous nowhere negative function S on \mathbb{R}^{d} whose integral is 1 .

The subject of our investigation is convergence of $\mathscr{F}^{-1} \overline{\mathscr{F}}_{M} f$ to f for bounded integrable functions f. A glance at (3.3), however, shows that it makes good sense to put the problem more generally. In fact, for any bounded measurable function f on \mathbb{R}^{d}, not necessarily integrable, we define functions $f_{M}, M>0$, by

$$
\begin{equation*}
f_{M}(a):=\int_{\mathbb{R}^{d}} f\left(a+\frac{x}{M}\right) S(x) d x, \quad a \in \mathbb{R}^{d} \tag{3.6}
\end{equation*}
$$

and we will consider convergence of f_{M} to f as M tends to infinity.
We will frequently use the following estimates.

Lemma 3.1.

$$
\begin{align*}
0 \leqslant S(x) \leqslant(2 \pi)^{-d}, & x \in \mathbb{R}^{d} . \tag{3.7}\\
\int_{\|x\| \geqslant r} S(x) d s \leqslant \frac{2 d^{2}}{r}, & r>0 . \tag{3.8}
\end{align*}
$$

Proof of (3.8). If $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $\left|x_{k}\right| \leqslant r / d$ for $k=1, \ldots, d$, then $\|x\| \leqslant r$. Hence, in the terminology of (3.4) and (3.5),

$$
\begin{align*}
1-\int_{\|x\| \geqslant r} S(x) d x & =\int_{\|x\| \leqslant r}\left(\prod_{k=1}^{d} \sigma\left(x_{k}\right)\right) d x \\
& \geqslant\left(\int_{-r / d}^{r / d} \sigma(\xi) d \xi\right)^{d} \\
& =\left(1-2 \int_{r / d}^{\infty} \sigma(\xi) d \xi\right)^{d} \\
& \geqslant 1-d \cdot 2 \int_{r / d}^{\infty} \sigma(\xi) d \xi \\
& \geqslant 1-d \cdot 2 \int_{r / d}^{\infty} \frac{2}{\pi \xi^{2}} d \xi \\
& =1-\frac{4 d^{2}}{\pi r} \geqslant 1-\frac{2 d^{2}}{r} \tag{3.9}
\end{align*}
$$

For a given function f, in order to show that $d_{\mathscr{H}}\left(f_{M}, f\right) \rightarrow 0(M \rightarrow \infty)$, one has to find functions α and β on $(0, \infty)$ such that $\alpha(M) \rightarrow 0$ and $\beta(M) \rightarrow 0(M \rightarrow \infty)$, whereas, for all M,

$$
\bar{\Gamma}_{f_{M}} \subset \bar{\Gamma}_{f}+\alpha(M) \bar{B}^{(d+1)}, \quad \bar{\Gamma}_{f} \subset \bar{\Gamma}_{f_{M}}+\beta(M) \bar{B}^{(d+1)} .
$$

Curiously, for α we need no condition on f (except for boundedness and measurability). In fact, one may always take $\alpha(M):=d(\Delta f)^{1 / 2} M^{-1 / 2}$, where

$$
\Delta f:=\sup _{x, y \in \mathbb{R}^{d}}|f(x)-f(y)| .
$$

Lemma 3.2. Let f be a bounded measurable function on \mathbb{R}^{d}. Then

$$
\bar{\Gamma}_{f_{M}} \subset \bar{\Gamma}_{f}+d \sqrt{\Delta f} \cdot M^{-1 / 2} \bar{B}^{(d+1)} \quad(M>0) .
$$

Proof. Put $K:=d \sqrt{\Delta f}$. Without restriction, assume that all values of f lie in the interval $\left[-\frac{1}{2} \Delta f, \frac{1}{2} \Delta f\right]$. Let $M>0$.

Take $a \in \mathbb{R}^{d}$. Putting

$$
\mu:=\sup \left\{f(x):\|x-a\|<K M^{-1 / 2}\right\}
$$

we have $f\left(a+x M^{-1}\right) \leqslant \mu$ if $\|x\|<K M^{1 / 2}$ and $f\left(a+x M^{-1}\right) \leqslant \frac{1}{2} \Delta f$ for all x. Thus, with (3.8),

$$
\begin{aligned}
f_{M}(a) & \leqslant \int_{\|x\|<K M^{1 / 2}} \mu S(x) d x+\int_{\|x\| \geqslant k M^{1 / 2}}\left(\frac{1}{2} \Delta f\right) S(x) d x \\
& <\mu+\frac{1}{2} \Delta f \frac{2 d^{2}}{K M^{1 / 2}}=\mu+K M^{-1 / 2} .
\end{aligned}
$$

Similarly,

$$
f_{M}(a)>\lambda-K M^{-1 / 2}
$$

where

$$
\lambda:=\inf \left\{f(x):\|x-a\|<K M^{-1 / 2}\right\} .
$$

By applying Lemma 2.2 and observing that f_{M} is continuous, we find

$$
\bar{\Gamma}_{f_{M}}=\Gamma_{f_{M}} \subset \bar{\Gamma}_{f}+K M^{-1 / 2} \bar{B}^{(d+1)} .
$$

We have $d_{\mathscr{H}}\left(f_{M}, f\right) \leqslant\left\|f_{M}-f\right\|_{\infty} \rightarrow 0(M \rightarrow \infty)$ if f is (bounded and) uniformly continuous. Simple continuity is not sufficient, as is apparent from a rapidly oscillating function such as $x \mapsto \sin x^{2}(x \in \mathbb{R})$.

The next theorem describes the functions f vanishing at infinity for which $d_{\mathscr{H}}\left(f_{M}, f\right) \rightarrow 0 \quad(M \rightarrow \infty)$, but without an estimate for the speed of convergence. (An example is the indicator of a bounded regular open set.)

Theorem 3.3. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be bounded and measurable and such that $\lim _{\|x\| \rightarrow \infty} f(x)=0$. Then the following conditions are equivalent.
(i) If $a \in \mathbb{R}^{d}$ and $\alpha, \beta \in \mathbb{R}$ are so that $\alpha \leqslant f \leqslant \beta$ a.e. on some neighborhood of a, then $\alpha \leqslant f(a) \leqslant \beta$.
(ii) $\lim _{M \rightarrow \infty} d_{\mathscr{H}}\left(f_{M}, f\right)=0$.

Proof. (i) \Rightarrow (ii). Let $\varepsilon>0$. In view of Theorem 3.2, Formula (2.6) and Lemma 2.3 we only have to show that

$$
\begin{equation*}
\Gamma_{f} \subset \Gamma_{f_{M}}+\varepsilon \bar{B}^{(d+1)} \quad \text { if } M \text { is large enough. } \tag{*}
\end{equation*}
$$

Choose $R>0$ such that $\|x\| \leqslant R$ for every x with $|f(x)| \geqslant \frac{1}{4} \varepsilon$.
If $a \in \mathbb{R}^{d}$ and $\|a\|>R+1$, then $|f(a+y)| \leqslant \frac{1}{4} \varepsilon$ as soon as $\|y\| \leqslant 1$, so that for all M

$$
\left|f_{M}(a)\right| \leqslant \frac{1}{4} \varepsilon+\int_{\|x\| \geqslant M}\left|f\left(a+\frac{x}{M}\right)\right| S(x) d x \leqslant \frac{1}{4} \varepsilon+\|f\|_{\infty} \frac{2 d^{2}}{M},
$$

whence

$$
\left|f_{M}(a)-f(a)\right| \leqslant \frac{1}{4} \varepsilon+\|f\|_{\infty} \frac{2 d^{2}}{M}+\frac{1}{4} \varepsilon .
$$

It follows that for $M \geqslant 4\|f\|_{\infty} 2 d^{2} \varepsilon^{-1}$:

$$
\begin{equation*}
\{(a, f(a)):\|a\|>R+1\} \subset \Gamma_{f_{M}}+\varepsilon \bar{B}^{(d+1)} . \tag{3.10}
\end{equation*}
$$

Cover $\left\{a \in \mathbb{R}^{d}:\|a\| \leqslant R+1\right\}$ by finitely many open sets U_{1}, \ldots, U_{N} with diameters smaller than ε. For $n=1, \ldots, N$ let

$$
s_{n}:=\inf \left\{s: f \leqslant s \text { a.e. on } U_{n}\right\} .
$$

Let X be the Lebesgue set of f. By a d-dimensional version of [1], 6.C, $f_{M} \rightarrow f$ pointwise on X. Furthermore, the complement of X is negligible. Thus, for each n we can choose an x_{n} in $U_{n} \cap X$ with $f\left(x_{n}\right)>s_{n}-\varepsilon / 2$, and there is an M_{1} such that $f_{M}\left(x_{n}\right)>s_{n}-\varepsilon$ for all $M \geqslant M_{1}$ and $n \in\{1, \ldots, N\}$. If $a \in U_{n}$ and $M \geqslant M_{1}$, then (using (i)):

$$
f(a) \leqslant s_{n}<f_{M}\left(x_{n}\right)+\varepsilon .
$$

Thus,

$$
\text { if }\|a\| \leqslant R+1 \text { and } M \geqslant M_{1} \text {, then } f(a)<\sup \left\{f_{M}(x):\|x-a\|<\varepsilon\right\}+\varepsilon .
$$

Similarly, there is an M_{2} for which

$$
\text { if }\|a\| \leqslant R+1 \text { and } M \geqslant M_{2} \text {, then } f(a)>\inf \left\{f_{M}(x):\|x-a\|<\varepsilon\right\}-\varepsilon .
$$

If follows from Lemma 2.2 that for all sufficiently large M :

$$
\begin{equation*}
\{(a, f(a)):\|a\| \leqslant R+1\} \subset \Gamma_{f_{M}}+\varepsilon \bar{B}^{(d+1)} . \tag{3.11}
\end{equation*}
$$

Together with (3.10), this is (*).
(ii) \Rightarrow (i). Suppose $a \in \mathbb{R}^{d}, r>0, \beta \in \mathbb{R}$, and $f \leqslant \beta$ a.e. on $B_{2 r}(a)$. Let $\varepsilon>0$; it suffices to prove $f(a) \leqslant \beta+2 \varepsilon$. Choose M so that $d_{\mathscr{H}}\left(f_{M}, f\right)<$ $\min \{r, \varepsilon\}$ and $2 d^{2}\|f\|_{\infty}<M r \varepsilon$. Then there is a $b \in B_{r}(a)$ with $\left|f_{M}(b)-f(a)\right|$ $<\varepsilon$. As $f \leqslant \beta$ a.e. on $B_{r}(b)$, we have

$$
f_{M}(b) \leqslant \int_{\|x\|<M r} \beta S(x) d x+\int_{\|x\| \geqslant M r}\|f\|_{\infty} S(x) d x \leqslant \beta+\varepsilon,
$$

whence $f(a) \leqslant \beta+2 \varepsilon$.

4. THE CONDITION ON f

A function f on \mathbb{R}^{d} is said to be uniformly locally Lipschitz if the following is true:

There exist positive numbers h, α, C with the following property: for every $a \in \mathbb{R}^{d}$ there is a circular cone Σ_{a} with vertex a, height h and angle α, for which $|f(x)-f(y)| \leqslant C\|x-y\|, x, y \in \Sigma_{a}$.

Lemma 4.1. Every uniformly locally Lipschitz function on \mathbb{R}^{d} is Lebesgue measurable.

Proof. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be uniformly locally Lipschitz. Let \mathscr{A} be a maximal disjoint collection of subsets A of \mathbb{R}^{d} that have the properties:
(1) A is measurable and has positive Lebesgue measure;
(2) the restriction of f to A is continuous.

Let X be the complement of the union of \mathscr{A}. It follows from (1) that \mathscr{A} is countable, so X is measurable and (by (2)) we are done if it is negligible. Suppose it is not. Choose a density point a of X. There is a circular cone Σ, containing a, and such that the restriction of f to Σ is Lipschitz. Choose $c \in \mathbb{R}^{d}$ and $r>0$ such that the ball $B_{r}(a+c)$ is contained in Σ. By the convexity of Σ, for every $\varepsilon \in(0,1]$ we have $B_{\varepsilon r}(a+\varepsilon c) \subset \Sigma$.

As a is a density point of X, for some $\varepsilon \in(0,1]$ we have (m being Lebesgue measure):

$$
\begin{aligned}
m\left(B_{\varepsilon r+\varepsilon\|c\|}(a) \cap X\right) & >\left(1-\left(\frac{r}{r+\|c\|}\right)^{d}\right) m\left(B_{\varepsilon r+\varepsilon\|c\|}(a)\right) \\
& =m\left(B_{\varepsilon r+\varepsilon\|c\|}(a)\right)-m\left(B_{\varepsilon r}(a+\varepsilon c)\right) \\
& =m\left(B_{\varepsilon r+\varepsilon\|c\|}(a)-B_{\varepsilon r}(a+\varepsilon c)\right) .
\end{aligned}
$$

This is possible only if $B_{\varepsilon r}(a+\varepsilon c) \cap X$ has positive measure. But $B_{\varepsilon r}(a+\varepsilon c) \subset \Sigma$, so f is Lipschitz on $B_{\varepsilon r}(a+\varepsilon c) \cap X$. This contradicts the maximality of \mathscr{A}.

Theorem 4.2. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be bounded and uniformly locally Lipschitz. Then

$$
d_{\mathscr{H}}\left(f, f_{M}\right)=\mathcal{O}\left(M^{-1 / 2}\right), \quad M \rightarrow \infty
$$

Proof. Take $C, \Sigma_{a}\left(a \in \mathbb{R}^{p}\right)$ as in (4.1). Write $\Sigma:=\Sigma_{0}$; then every Σ_{a} is isometric to Σ. Let $r>0$ be such that Σ contains a ball with radius r.

Because of Theorem 3.2 and Lemma 2.3, it is enough to find a number K with

$$
\begin{equation*}
\Gamma_{f} \subset \Gamma_{f_{M}}+K M^{-1 / 2} \bar{B}^{(d+1)} \quad \text { if } \quad M>r^{-2} \tag{*}
\end{equation*}
$$

We show that this is satisfied by:

$$
K:=\max \left\{K_{1}, K_{2}\right\}, \quad K_{1}:=C\left(\frac{\operatorname{diam} \Sigma}{r}+1\right)+2 d^{2} \Delta f, \quad K_{2}:=\frac{\operatorname{diam} \Sigma}{r} .
$$

Take $a \in \mathbb{R}^{d}$ and $M>r^{-2}$. Choose $c \in \mathbb{R}^{d}$ so that $B_{r}(a+c) \subset \Sigma_{a}$. Setting $\delta:=r^{-1} M^{-1 / 2}$ we have $0<\delta<1$, whence

$$
B_{M^{-1 / 2}}(a+\delta c)=B_{\delta r}(a+\delta c) \subset \Sigma_{a}
$$

and

$$
\begin{aligned}
\mid f(a) & -f_{M}(a+\delta c) \mid \\
& \leqslant \int_{x \in \mathbb{R}^{d}}\left|f(a)-f\left(a+\delta c+\frac{x}{M}\right)\right| S(x) d x \\
& \leqslant \int_{\|x\|<M^{1 / 2}} C\left\|\delta c+\frac{x}{M}\right\| S(x) d x+\int_{\|x\| \geqslant M^{1 / 2}}(\Delta f) S(x) d x \\
& \leqslant C\left(\delta \cdot \operatorname{diam} \Sigma+\frac{1}{\sqrt{M}}\right)+(\Delta f) \cdot \frac{2 d^{2}}{\sqrt{M}} \\
& =K_{1} M^{-1 / 2} .
\end{aligned}
$$

As $\|a-(a+\delta c)\| \leqslant \delta \cdot \operatorname{diam} \Sigma=K_{2} M^{-1 / 2}$, we have (*).
Theorem 4.3. Suppose X_{1}, \ldots, X_{N} are subsets of \mathbb{R}^{d} whose union is a ball B and assume that each X_{n} either is convex with nonempty interior or has a smooth boundary. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be Lipschitz on each X_{n} and vanish identically off B. Then

$$
d_{\mathscr{H}}\left(f, f_{M}\right)=\mathcal{O}\left(M^{-1 / 2}\right), \quad M \rightarrow \infty .
$$

Proof. Let X_{0} be the complement of B; then X_{0} has a smooth boundary. We are done if for every $n \in\{0,1, \ldots, N\}$ there exist $h_{n}, \alpha_{n}>0$ with the property that every point of X_{n} is the vertex of a circular cone that has height h_{n} and angle α_{n}, and is contained in X_{n}. It follows readily from the proof of Theorem 5.3 in [4] that such h_{n} and α_{n} exist in case X_{n} has a smooth boundary. If X_{n} is convex and has nonempty interior, choose a closed ball $\bar{B}_{r}(c)$ in X_{n} and let R be the diameter of X_{n}; for every a in X_{n}
we see that X_{n} contains the convex hull of $\{a\} \cup \bar{B}(c)$, and thereby a cone with vertex a, height r and angle $\operatorname{arc} \sin R^{-1} r$. I

For indicator functions of bounded sets, Theorem 4.2 is optimal in the following sense. Let X be a measurable subset of \mathbb{R}^{d} that is bounded, nonempty, and let f be its indicator. Then

$$
d_{\mathscr{H}}\left(f, f_{M}\right) \geqslant \frac{1}{10} M^{-1 / 2}, \quad M \in \mathbb{N} .
$$

Proof. By translation invariance we may assume

$$
X \subset[0, \infty) \times \mathbb{R}^{d-1}, \quad \text { the closure of } X \text { contains } 0 .
$$

Take $M \in \mathbb{N}$ and $\delta>d_{\mathscr{H}}\left(f, f_{M}\right)$. As $(0,1)$ lies in the closure of Γ_{f}, there must exist an $a \in \mathbb{R}^{d}$ with $\left\|(0,1)-\left(a, f_{M}(a)\right)\right\|<\delta$; then certainly $\|a\|<\delta$ and $1-f_{M}(a)<\delta$. If g is the indicator of $(0, \infty) \times \mathbb{R}^{d-1}$, then $g \leqslant 1-f$, whence $g_{M} \leqslant 1-f_{M}$. By (3.3), applied to g, one sees that

$$
g_{M}(a)=\int_{-M \alpha}^{\infty} \sigma(\xi) d \xi
$$

where α is the first coordinate of a. As $-\alpha \leqslant \delta$, one has

$$
\delta>1-f_{M}(a) \geqslant g_{M}(a)=\int_{-M \alpha}^{\infty} \sigma(\xi) d \xi \geqslant \int_{M \delta}^{\infty} \sigma(\xi) d \xi .
$$

From this, it is not hard to obtain $M \delta^{2} \geqslant 10^{-2}$, i.e., $\delta \geqslant 10^{-1} M^{-1 / 2}$.

REFERENCES

1. R. R. Goldberg, "Fourier Transforms," Cambridge Univ. Press, Cambridge, UK, 1961.
2. J. L. Kelley, "General Topology," Springer-Verlag, Berlin/Heidelberg/New York, 1975.
3. A. van Rooij and F. H. Ruymgaart, Convergence in the Hausdorff metric of estimators of irregular densities using Fourier-Cesàro approximation, Statist. Probab. Lett. 39 (1998), 179-184.
4. A. van Rooij and F. H. Ruymgaart, Hausdorff distance and Fourier integrals, Report 9703, Department of Mathematics, Catholic University, Nijmegen, The Netherlands.

[^0]: ${ }^{1}$ Research supported by NSF grant DMS 95-04485.

