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For a function f on Rd we consider its Fourier transform Ff and the (integrable)
Cesa� ro averages F� M f of suitable truncations of Ff, described by the formula
(F� M f )(a)=M &d (M&|a1| )+ } } } (M&|ad | )+ (Ff )(a). We study the speed of the
convergence F&1F� M f � f, (M � �), under a metric that is somewhere between the
L1- and the L�-metrics. In this metric (which is appropriate to problems of pattern
recognition), the distance between two functions is, more or less, the Hausdorff dis-
tance between their graphs. We describe a class of functions f for which the distance
between F&1F� M f and f is O(M&1�2), the fastest rate of converges one can have for
discontinuous f. � 2000 Academic Press

1. INTRODUCTION

For an integrable function f on Rd we define its Fourier transform, Ff,
and its inverse Fourier transform, F&1f, by:

(Ff )(a) :=(2?)&d�2 |
Rd

f (x) ei(x, a) dx,

(a # R).

(F&1f )(a) :=(2?)&d�2 |
R d

f (x) e&i(x, a) dx

doi:10.1006�jath.2000.3498, available online at http:��www.idealibrary.com on

67
0021-9045�00 �35.00

Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 Research supported by NSF grant DMS 95-04485.



If Ff is integrable, f may be recuperated from Ff by the formula
f =F&1Ff. In general, F&1Ff does not exist, but one may consider the
truncations Fm f where m=(m1 , ..., md) # (0, �)d, defined by

(Fm f )(a) :={(Ff )(a)
0

if |a1|�m1 , ..., |ad |�md ,
if not,

and their Cesa� ro averages F� M f (M>0):

(F� M f )(a)=M&d |
M

0
} } } |

M

0
(Fm f )(a) dm1 } } } dmd .

One then has F&1F� M f � f (M � �) in the sense of L1(Rd).
Our goal is to study the speed of convergence, where, however, we do

not use the L1-metric but a less conventional distance concept that
somewhat resembles the Skorohod metric.

The idea behind this approach originates in problems of pattern recogni-
tion. There, typically, f is the indicator of a set X that one wants to
reconstruct (approximately) from Ff or its truncations, Fm f. The
L1-approximation mentioned above is sometimes too rough, as Fm f tends
to ignore small pieces of X. In such cases, one would prefer uniform
approximation, but F&1Fm f and F&1F� M f are continuous and therefore
cannot converge uniformly to f. What one can do is consider the graph of
F&1F� M f (in Rd_R) and observe that, for large M, it closely resembles the
set 1� f obtained from the graph of f by adding all points (x, t) where x lies
in the boundary of the set X and t lies in the interval [0, 1]. If X is not
too wild, for sufficiently large M every point of the graph of F&1F� M f is
close to 1� f , and vice versa. (Owing to the Gibbs phenomenon, F&1Fm f
instead of F&1F� M f will not do.) This idea leads to the introduction of
a metric on a certain class of closed subsets of Rd_R, analogous to
the Hausdorff metric on the class of all compact subsets. From this metric
we obtain a pseudometric dH on the set of all bounded functions
on Rd. To some extent, this dH behaves like the uniform metric (indeed,
it is equivalent to the uniform metric on the set of all uniformly continuous
bounded functions). On the other hand, in the sense of dH the functions
F&1F� M f tend to f if, say, f is the indicator of a bounded regularly closed
set.

Our main purpose is to study speed of convergence. In Theorem 4.2 we
describe a large class of functions f for which dH (F&1F� M f, f )=O(M&1�2)
(M � �). At the end of the paper we show that, for indicators of
nonempty bounded sets, one cannot have faster convergence.
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2. THE PSEUDOMETRIC

Let f be a bounded function on Rd. We denote its graph by 1f and define

1f, l :=[(x, t) # Rd_R : t� f (x)],
(2.1)

1f, u :=[(x, t) # Rd_R : t� f (x)].

(These sets are sometimes called the hypograph and the epigraph of f.) The
extended graph of f,

1� f , (2.2)

is the intersection of the closures of 1f, l and 1f, u . It is also the boundary
of 1f, l and of 1f, u . It is a closed subset of Rd, containing the graph of f.
If f happens to be continuous, 1� f is the graph of f. If f is the indicator of
a set X/Rd, then

1� f =1f _ (�X_[0, 1]), (2.3)

�X being the boundary of X.
For two bounded functions, f and g, on Rd we define

dH ( f, g) (2.4)

to be the Hausdorff distance of 1� f and 1� g , i.e., the infimum of all positive
numbers r with the property

z # 1� f O there is a w # 1� g with &z&w&<r,
(2.5)

w # 1� g O there is a w # 1� f with &z&w&<r,

obtaining a pseudometric dH on the set of all bounded functions.
It is clear that uniform convergence implies dH -convergence. For

uniformly continuous functions, the converse is also true. In fact, we have:

Lemma 2.1. Let f1 , f2 , ... be bounded functions on Rd, let f: Rd � R be
bounded and uniformly continuous. Then

dH ( fn , f ) � 0 � fn � f uniformly.

Proof. One implication is obvious, as dH ( fn , f )�& fn& f &� for all n.
Now assume dH ( fn , f ) � 0. Let =>0. Choose $ # (0, =�2] such that
| f (x)& f ( y)|�=�2 as soon as x, y # Rd, &x& y&�$. For sufficiently large
n, we have dH ( fn , f )<$. For such n and for any a # Rd there is a b # Rd

with &(a, fn(a))&(b, f (b))&<$; then certainly &a&b&<$ and | fn(a)& f (b)|
<$, whence | f (a)& f (b)|<=�2 and | fn(a)& f (a)|<$+=�2�=. K

69FOURIER AND HAUSDORFF



For practically obtaining estimates of dH ( f, g) the following observation
is occasionally useful. Write

B� (d+1) :=[(x, *) # Rd_R : &x&�1, |*|�1]

and for r>0 put rB� (d+1) :=[rz : z # B� (d+1)]. If f and g are bounded
functions on Rd and r>0, then

dH ( f, g)<r O 1� f /1� g+rB� (d+1) and 1� g /1� f+rB� (d+1),
(2.6)

1� f /1� g+rB� (d+1) and 1� g /1� f+rB� d+1 O dH ( f, g)�2r.

For our results on dH -convergence of F&1F� M f to f we need the following
two facts.

Lemma 2.2. Let f be a bounded function on Rd; let a # Rd, r>0 and put

* := inf
&x&a&<r

f (x), + := sup
&x&a&<r

f (x).

Then for every t # (*&r, ++r) we have

(a, t) # 1� f+rB� (d+1).

Proof. Put Br(a) :=[x # Rd : &x&a&<r]. Let t # (*&r, ++r). Choose
a number s in the interval [t&r, t+r] & (*, +). Then the sets X& :=
[x # Br(a) : f (x)�s] and X+ :=[x # Br(a) : f (x)�s] both are nonempty.
There exists a point z of Br(a) that lies in the closure of both X& and X+ .
Choose a sequence x1 , x2 , ... in X& , converging to z and such that
s& :=lim f (xn) exists. Then s&�s and (z, s&) lies in the closure of 1f ,
hence in 1� f . Similarly, there is an s+�s with (z, s+) # 1� f . Thus, (z, s) # 1� f

and

(a, t) # (z, s)+rB� (d+1)/1� f+rB� (d+1). K

Lemma 2.3. Let f, g be bounded functions on Rd. Let r>0 and

1f /1� g+rB� (d+1).

Then

1� f /1� g+rB� (d+1).
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Proof. Let (a, t) # 1� f . First, take any =>0. Put

* :=inf[g(z): z # Br+2=(a)], + :=sup [g(z): z # Br+2=(a)],

Br+2=(a) being the open ball in Rd with center at a and radius r+2=.
(a, t) lies in the closure of 1f, l , so there is an x # Rd with &x&a&<=,

t< f (x)+=. There is a ( y, s) # 1� g such that &x& y&�r and | f (x)&s|�r.
As ( y, s) lies in the closure of 1g, l , there is a z # Rd with &y&z&<=,
s<g(z)+=. Then &z&a&<r+2= and t<g(z)+r+2=�++r+2=.

Similarly, t>*&r&2=. Thus, by Lemma 2.2,

(a, t) # 1� g+(r+2=) B� (d+1).

The above formula is valid for all =>0. Then, by compactness and
because 1� g is closed,

(a, t) # 1� g+rB� (d+1). K

3. THE PROBLEM

Let f be an integrable function on R and let F, F&1, Fm , F� M be as in
the Introduction. Then for all M>0 and a # Rd we obtain

(F&1F� M f )(a)=(2?)&d |
R d |

R d
f (x) ei(x, t)

_ `
d

k=1
\1&

|tk |
M +

+

e&i(a, t) dx dt. (3.1)

The substitution x=a+
y

M , t=Ms yields

(F&1F� M f )(a)=(2?)&d |
Rd |

R d
f \a+

y
M+

_ `
d

k=1

(1&|sk | )+ ei( y, s) dy ds. (3.2)

Thus,

(F&1F� M f )(a)=|
R d

f \a+
x
M+ S(x) dx, (3.3)
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where, for all x # Rd,

S(x) :=(2?)&d |
R d

`
d

k=1

(1&|sk | )+ ei(x, s) ds

=(2?)&d `
d

k=1
|

R

(1&|sk | )+ e ixk sk dsk

= `
d

k=1

_(xk), (3.4)

the function _: R � R being defined by

_(!) :={
1
?

1&cos !
!2

1
2?

if !{0,

if !=0.
(3.5)

Formula (3.4) determines a continuous nowhere negative function S on
Rd whose integral is 1.

The subject of our investigation is convergence of F&1F� M f to f for
bounded integrable functions f. A glance at (3.3), however, shows that it
makes good sense to put the problem more generally. In fact, for any
bounded measurable function f on Rd, not necessarily integrable, we define
functions fM , M>0, by

fM (a) :=|
R d

f \a+
x
M+ S(x) dx, a # Rd (3.6)

and we will consider convergence of fM to f as M tends to infinity.
We will frequently use the following estimates.

Lemma 3.1.

0�S(x)�(2?)&d, x # Rd. (3.7)

|
&x&�r

S(x) ds�
2d 2

r
, r>0. (3.8)

Proof of (3.8). If x=(x1 , ..., xd) # Rd and |xk |�r�d for k=1, ..., d, then
&x&�r. Hence, in the terminology of (3.4) and (3.5),
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1&|
&x&�r

S(x) dx=|
&x&�r \ `

d

k=1

_(xk)+ dx

�\|
r�d

&r�d
_(!) d!+

d

=\1&2 |
�

r�d
_(!) d!+

d

�1&d } 2 |
�

r�d
_(!) d!

�1&d } 2 |
�

r�d

2
?!2 d!

=1&
4d 2

?r
�1&

2d 2

r
. K (3.9)

For a given function f, in order to show that dH ( fM , f ) � 0 (M � �),
one has to find functions : and ; on (0, �) such that :(M) � 0 and
;(M) � 0 (M � �), whereas, for all M,

1� fM
/1� f+:(M) B� (d+1), 1� f /1� fM

+;(M) B� (d+1).

Curiously, for : we need no condition on f (except for boundedness and
measurability). In fact, one may always take :(M) :=d(2f )1�2 M&1�2,
where

2f := sup
x, y # Rd

| f (x)& f ( y)|.

Lemma 3.2. Let f be a bounded measurable function on Rd. Then

1� fM
/1� f+d - 2f } M&1�2B� (d+1) (M>0).

Proof. Put K :=d - 2f. Without restriction, assume that all values of f
lie in the interval [&1

22f, 1
22f ]. Let M>0.

Take a # Rd. Putting

+ :=sup[ f (x): &x&a&<KM&1�2]
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we have f (a+xM&1)�+ if &x&<KM 1�2 and f (a+xM&1)� 1
2 2f for all x.

Thus, with (3.8),

fM (a)�|
&x&<KM1�2

+S(x) dx+|
&x&�kM1�2 \1

2
2f+ S(x) dx

<++
1
2

2f
2d 2

KM1�2=++KM&1�2.

Similarly,

fM (a)>*&KM&1�2,

where

* :=inf[ f (x) : &x&a&<KM&1�2].

By applying Lemma 2.2 and observing that fM is continuous, we find

1� fM
=1fM

/1� f+KM&1�2B� (d+1). K

We have dH ( fM , f )�& fM& f &� � 0 (M � �) if f is (bounded and)
uniformly continuous. Simple continuity is not sufficient, as is apparent
from a rapidly oscillating function such as x [ sin x2(x # R).

The next theorem describes the functions f vanishing at infinity for which
dH ( fM , f ) � 0 (M � �), but without an estimate for the speed of
convergence. (An example is the indicator of a bounded regular open set.)

Theorem 3.3. Let f: Rd � R be bounded and measurable and such that
lim&x& � � f (x)=0. Then the following conditions are equivalent.

(i) If a # Rd and :, ; # R are so that :� f�; a.e. on some
neighborhood of a, then :� f (a)�;.

(ii) limM � � dH ( fM , f )=0.

Proof. (i) O (ii). Let =>0. In view of Theorem 3.2, Formula (2.6) and
Lemma 2.3 we only have to show that

1f /1fM
+=B� (d+1) if M is large enough. (V)

Choose R>0 such that &x&�R for every x with | f (x)|� 1
4 =.

If a # Rd and &a&>R+1, then | f (a+ y)|� 1
4= as soon as &y&�1, so that

for all M

| fM (a)|�
1
4

=+|
&x&�M } f \a+

x
M+} S(x) dx�

1
4

=+& f &�
2d 2

M
,
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whence

| fM (a)& f (a)|�
1
4

=+& f &�
2d 2

M
+

1
4

=.

It follows that for M�4 & f &� 2d 2=&1:

[(a, f (a)) : &a&>R+1]/1fM
+=B� (d+1). (3.10)

Cover [a # Rd : &a&�R+1] by finitely many open sets U1 , ..., UN with
diameters smaller than =. For n=1, ..., N let

sn :=inf[s : f�s a.e. on Un].

Let X be the Lebesgue set of f. By a d-dimensional version of [1], 6.C,
fM � f pointwise on X. Furthermore, the complement of X is negligible.
Thus, for each n we can choose an xn in Un & X with f (xn)>sn&=�2, and
there is an M1 such that fM (xn)>sn&= for all M�M1 and n # [1, ..., N].
If a # Un and M�M1 , then (using (i)):

f (a)�sn< fM (xn)+=.

Thus,

if &a&�R+1 and M�M1 , then f (a)<sup [ fM (x): &x&a&<=]+=.

Similarly, there is an M2 for which

if &a&�R+1 and M�M2 , then f (a)>inf[ fM (x): &x&a&<=]&=.

If follows from Lemma 2.2 that for all sufficiently large M:

[(a, f (a)) : &a&�R+1]/1fM
+=B� (d+1). (3.11)

Together with (3.10), this is (V).

(ii) O (i). Suppose a # Rd, r>0, ; # R, and f�; a.e. on B2r(a). Let
=>0; it suffices to prove f (a)�;+2=. Choose M so that dH ( fM , f )<
min[r, =] and 2d 2 & f &�<Mr=. Then there is a b # Br(a) with | fM (b)& f (a)|
<=. As f�; a.e. on Br(b), we have

fM (b)�|
&x&<Mr

;S(x) dx+|
&x&�Mr

& f &� S(x) dx�;+=,

whence f (a)�;+2=. K
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4. THE CONDITION ON f

A function f on Rd is said to be uniformly locally Lipschitz if the following
is true:

There exist positive numbers h, :, C with the following property:
for every a # Rd there is a circular cone 7a with vertex a, height
h and angle :, for which | f (x)& f ( y)|�C &x& y&, x, y # 7a .

(4.1)

Lemma 4.1. Every uniformly locally Lipschitz function on Rd is Lebesgue
measurable.

Proof. Let f: Rd � R be uniformly locally Lipschitz. Let A be a
maximal disjoint collection of subsets A of Rd that have the properties:

(1) A is measurable and has positive Lebesgue measure;

(2) the restriction of f to A is continuous.

Let X be the complement of the union of A. It follows from (1) that A

is countable, so X is measurable and (by (2)) we are done if it is negligible.
Suppose it is not. Choose a density point a of X. There is a circular cone
7, containing a, and such that the restriction of f to 7 is Lipschitz. Choose
c # Rd and r>0 such that the ball Br(a+c) is contained in 7. By the
convexity of 7, for every = # (0, 1] we have B=r(a+=c)/7.

As a is a density point of X, for some = # (0, 1] we have (m being
Lebesgue measure):

m(B=r+= &c&(a) & X)>\1&\ r
r+&c&+

d

+ m(B=r+= &c&(a))

=m(B=r+= &c&(a))&m(B=r(a+=c))

=m(B=r+= &c&(a)&B=r(a+=c)).

This is possible only if B=r(a+=c) & X has positive measure. But
B=r(a+=c)/7, so f is Lipschitz on B=r(a+=c) & X. This contradicts the
maximality of A. K

Theorem 4.2. Let f: Rd � R be bounded and uniformly locally Lipschitz.
Then

dH ( f, fM)=O(M &1�2), M � �.

Proof. Take C, 7a(a # R p) as in (4.1). Write 7 :=70 ; then every 7a is
isometric to 7. Let r>0 be such that 7 contains a ball with radius r.
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Because of Theorem 3.2 and Lemma 2.3, it is enough to find a number K
with

1f /1fM
+KM&1�2B� (d+1) if M>r&2. (V)

We show that this is satisfied by:

K :=max[K1 , K2], K1 :=C \diam 7
r

+1++2d 22f, K2 :=
diam 7

r
.

Take a # Rd and M>r&2. Choose c # Rd so that Br(a+c)/7a . Setting
$ :=r&1M &1�2 we have 0<$<1, whence

BM &1�2(a+$c)=B$r(a+$c)/7a

and

| f (a)& fM(a+$c)|

�|
x # Rd } f (a)& f \a+$c+

x
M+} S(x) dx

�|
&x&<M1�2

C "$c+
x
M" S(x) dx+|

&x&�M1�2
(2f ) S(x) dx

�C \$ } diam 7+
1

- M++(2f ) }
2d 2

- M

=K1M&1�2.

As &a&(a+$c)&�$ } diam 7=K2M &1�2, we have (V). K

Theorem 4.3. Suppose X1 , ..., XN are subsets of Rd whose union is a ball
B and assume that each Xn either is convex with nonempty interior or
has a smooth boundary. Let f: Rd � R be Lipschitz on each Xn and vanish
identically off B. Then

dH ( f, fM)=O(M &1�2), M � �.

Proof. Let X0 be the complement of B; then X0 has a smooth boundary.
We are done if for every n # [0, 1, ..., N] there exist hn , :n>0 with the
property that every point of Xn is the vertex of a circular cone that has
height hn and angle :n , and is contained in Xn . It follows readily from the
proof of Theorem 5.3 in [4] that such hn and :n exist in case Xn has a
smooth boundary. If Xn is convex and has nonempty interior, choose a
closed ball B� r(c) in Xn and let R be the diameter of Xn ; for every a in Xn
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we see that Xn contains the convex hull of [a] _ B� (c), and thereby a cone
with vertex a, height r and angle arc sin R&1r. K

For indicator functions of bounded sets, Theorem 4.2 is optimal in the
following sense. Let X be a measurable subset of Rd that is bounded,
nonempty, and let f be its indicator. Then

dH ( f, fM)� 1
10M &1�2, M # N.

Proof. By translation invariance we may assume

X/[0, �)_Rd&1, the closure of X contains 0.

Take M # N and $>dH ( f, fM). As (0, 1) lies in the closure of 1f , there
must exist an a # Rd with &(0, 1)&(a, fM(a))&<$; then certainly &a&<$
and 1& fM(a)<$. If g is the indicator of (0, �)_Rd&1, then g�1& f,
whence gM�1& fM . By (3.3), applied to g, one sees that

gM(a)=|
�

&M:
_(!) d!,

where : is the first coordinate of a. As &:�$, one has

$>1& fM(a)�gM(a)=|
�

&M:
_(!) d!�|

�

M$
_(!) d!.

From this, it is not hard to obtain M$2�10&2, i.e., $�10&1M&1�2.

REFERENCES

1. R. R. Goldberg, ``Fourier Transforms,'' Cambridge Univ. Press, Cambridge, UK, 1961.
2. J. L. Kelley, ``General Topology,'' Springer-Verlag, Berlin�Heidelberg�New York, 1975.
3. A. van Rooij and F. H. Ruymgaart, Convergence in the Hausdorff metric of estimators of

irregular densities using Fourier�Cesa� ro approximation, Statist. Probab. Lett. 39 (1998),
179�184.

4. A. van Rooij and F. H. Ruymgaart, Hausdorff distance and Fourier integrals, Report 9703,
Department of Mathematics, Catholic University, Nijmegen, The Netherlands.

78 VAN ROOIJ AND RUYMGAART


	1. INTRODUCTION 
	2. THE PSEUDOMETRIC 
	3. THE PROBLEM 
	4. THE CONDITION ON ... 
	REFERENCES 

