

Fourier Approximation and Hausdorff Convergence¹

A. van Rooij

Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands

and

F. H. Ruymgaart

Texas Tech University, Lubbock, Texas 79409-1042

Communicated by Vilmos Totik

Received April 2, 1998; accepted in revised form June 2, 2000; published online October 11, 2000

For a function f on \mathbb{R}^d we consider its Fourier transform $\mathcal{F}f$ and the (integrable) Cesáro averages $\overline{\mathcal{F}}_{M}f$ of suitable truncations of $\mathcal{F}f$, described by the formula $(\overline{\mathscr{F}}_M f)(a) = M^{-d}(M - |a_1|)^+ \cdots (M - |a_d|)^+ (\mathscr{F} f)(a)$. We study the speed of the convergence $\mathscr{F}^{-1}\bar{\mathscr{F}}_M f \to f$, $(M \to \infty)$, under a metric that is somewhere between the L^1 - and the L^{∞} -metrics. In this metric (which is appropriate to problems of pattern recognition), the distance between two functions is, more or less, the Hausdorff distance between their graphs. We describe a class of functions f for which the distance between $\mathscr{F}^{-1}\overline{\mathscr{F}}_{M}f$ and f is $\mathscr{O}(M^{-1/2})$, the fastest rate of converges one can have for discontinuous f. © 2000 Academic Press

1. INTRODUCTION

For an integrable function f on \mathbb{R}^d we define its Fourier transform, $\mathcal{F}f$, and its inverse Fourier transform, $\mathcal{F}^{-1}f$, by:

$$(\mathscr{F}f)(a) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} f(x) e^{i\langle x, a \rangle} dx,$$

$$(a \in \mathbb{R}).$$

$$(\mathscr{F}^{-1}f)(a) := (2\pi)^{-d/2} \int_{\mathbb{R}^d} f(x) e^{-i\langle x, a \rangle} dx$$

¹ Research supported by NSF grant DMS 95-04485.

If $\mathscr{F}f$ is integrable, f may be recuperated from $\mathscr{F}f$ by the formula $f = \mathscr{F}^{-1}\mathscr{F}f$. In general, $\mathscr{F}^{-1}\mathscr{F}f$ does not exist, but one may consider the truncations $\mathscr{F}_m f$ where $m = (m_1, ..., m_d) \in (0, \infty)^d$, defined by

$$(\mathscr{F}_m f)(a) := \begin{cases} (\mathscr{F} f)(a) & \text{if} \quad |a_1| \leqslant m_1, ..., |a_d| \leqslant m_d, \\ 0 & \text{if not,} \end{cases}$$

and their Cesàro averages $\overline{\mathscr{F}}_M f(M > 0)$:

$$(\overline{\mathscr{F}}_M f)(a) = M^{-d} \int_0^M \cdots \int_0^M (\mathscr{F}_m f)(a) dm_1 \cdots dm_d.$$

One then has $\mathscr{F}^{-1}\overline{\mathscr{F}}_M f \to f(M \to \infty)$ in the sense of $L^1(\mathbb{R}^d)$.

Our goal is to study the speed of convergence, where, however, we do not use the L^1 -metric but a less conventional distance concept that somewhat resembles the Skorohod metric.

The idea behind this approach originates in problems of pattern recognition. There, typically, f is the indicator of a set X that one wants to reconstruct (approximately) from $\mathcal{F}f$ or its truncations, $\mathcal{F}_m f$. The L^1 -approximation mentioned above is sometimes too rough, as $\mathscr{F}_m f$ tends to ignore small pieces of X. In such cases, one would prefer uniform approximation, but $\mathscr{F}^{-1}\mathscr{F}_m f$ and $\mathscr{F}^{-1}\overline{\mathscr{F}}_M f$ are continuous and therefore cannot converge uniformly to f. What one can do is consider the graph of $\mathscr{F}^{-1}\bar{\mathscr{F}}_M f$ (in $\mathbb{R}^d \times \mathbb{R}$) and observe that, for large M, it closely resembles the set $\overline{\Gamma}_f$ obtained from the graph of f by adding all points (x, t) where x lies in the boundary of the set X and t lies in the interval [0, 1]. If X is not too wild, for sufficiently large M every point of the graph of $\mathcal{F}^{-1}\overline{\mathcal{F}}_{M}f$ is close to $\overline{\Gamma}_f$, and vice versa. (Owing to the Gibbs phenomenon, $\mathscr{F}^{-1}\mathscr{F}_m f$ instead of $\mathcal{F}^{-1}\bar{\mathcal{F}}_{M}f$ will not do.) This idea leads to the introduction of a metric on a certain class of closed subsets of $\mathbb{R}^d \times \mathbb{R}$, analogous to the Hausdorff metric on the class of all compact subsets. From this metric we obtain a pseudometric $d_{\mathscr{H}}$ on the set of all bounded functions on \mathbb{R}^d . To some extent, this $d_{\mathscr{H}}$ behaves like the uniform metric (indeed, it is equivalent to the uniform metric on the set of all uniformly continuous bounded functions). On the other hand, in the sense of $d_{\mathscr{H}}$ the functions $\mathscr{F}^{-1}\overline{\mathscr{F}}_{M}f$ tend to f if, say, f is the indicator of a bounded regularly closed set.

Our main purpose is to study speed of convergence. In Theorem 4.2 we describe a large class of functions f for which $d_{\mathscr{H}}(\mathcal{F}^{-1}\overline{\mathcal{F}}_{M}f,f)=\mathcal{O}(M^{-1/2})$ $(M\to\infty)$. At the end of the paper we show that, for indicators of nonempty bounded sets, one cannot have faster convergence.

2. THE PSEUDOMETRIC

Let f be a bounded function on \mathbb{R}^d . We denote its graph by Γ_f and define

$$\Gamma_{f,t} := \{ (x,t) \in \mathbb{R}^d \times \mathbb{R} : t \leqslant f(x) \},
\Gamma_{f,u} := \{ (x,t) \in \mathbb{R}^d \times \mathbb{R} : t \geqslant f(x) \}.$$
(2.1)

(These sets are sometimes called the hypograph and the epigraph of f.) The $extended\ graph$ of f,

$$\bar{\Gamma}_f,$$
 (2.2)

is the intersection of the closures of $\Gamma_{f,l}$ and $\Gamma_{f,u}$. It is also the boundary of $\Gamma_{f,l}$ and of $\Gamma_{f,u}$. It is a closed subset of \mathbb{R}^d , containing the graph of f. If f happens to be continuous, $\overline{\Gamma}_f$ is the graph of f. If f is the indicator of a set $X \subset \mathbb{R}^d$, then

$$\overline{\Gamma}_f = \Gamma_f \cup (\partial X \times [0, 1]), \tag{2.3}$$

 ∂X being the boundary of X.

For two bounded functions, f and g, on \mathbb{R}^d we define

$$d_{\mathcal{H}}(f,g) \tag{2.4}$$

to be the Hausdorff distance of $\bar{\Gamma}_f$ and $\bar{\Gamma}_g$, i.e., the infimum of all positive numbers r with the property

$$z \in \overline{\Gamma}_f \Rightarrow \text{ there is a } w \in \overline{\Gamma}_g \text{ with } ||z - w|| < r,$$

 $w \in \overline{\Gamma}_g \Rightarrow \text{ there is a } w \in \overline{\Gamma}_f \text{ with } ||z - w|| < r,$ (2.5)

obtaining a pseudometric $d_{\mathscr{H}}$ on the set of all bounded functions.

It is clear that uniform convergence implies $d_{\mathscr{H}}$ -convergence. For uniformly continuous functions, the converse is also true. In fact, we have:

LEMMA 2.1. Let $f_1, f_2, ...$ be bounded functions on \mathbb{R}^d , let $f: \mathbb{R}^d \to \mathbb{R}$ be bounded and uniformly continuous. Then

$$d_{\mathcal{H}}(f_n, f) \to 0 \iff f_n \to f \text{ uniformly.}$$

Proof. One implication is obvious, as $d_{\mathscr{H}}(f_n, f) \leq \|f_n - f\|_{\infty}$ for all n. Now assume $d_{\mathscr{H}}(f_n, f) \to 0$. Let $\varepsilon > 0$. Choose $\delta \in (0, \varepsilon/2]$ such that $|f(x) - f(y)| \leq \varepsilon/2$ as soon as $x, y \in \mathbb{R}^d$, $\|x - y\| \leq \delta$. For sufficiently large n, we have $d_{\mathscr{H}}(f_n, f) < \delta$. For such n and for any $a \in \mathbb{R}^d$ there is a $b \in \mathbb{R}^d$ with $\|(a, f_n(a)) - (b, f(b))\| < \delta$; then certainly $\|a - b\| < \delta$ and $|f_n(a) - f(b)| < \delta$, whence $|f(a) - f(b)| < \varepsilon/2$ and $|f_n(a) - f(a)| < \delta + \varepsilon/2 \leq \varepsilon$.

For practically obtaining estimates of $d_{\mathscr{H}}(f,g)$ the following observation is occasionally useful. Write

$$\bar{B}^{(d+1)} := \{ (x, \lambda) \in \mathbb{R}^d \times \mathbb{R} : ||x|| \le 1, |\lambda| \le 1 \}$$

and for r > 0 put $r\overline{B}^{(d+1)} := \{rz : z \in \overline{B}^{(d+1)}\}$. If f and g are bounded functions on \mathbb{R}^d and r > 0, then

$$\begin{split} d_{\mathscr{H}}(f,g) < r & \Rightarrow \quad \bar{\Gamma}_f \subset \bar{\Gamma}_g + r \bar{B}^{(d+1)} \text{ and } \bar{\Gamma}_g \subset \bar{\Gamma}_f + r \bar{B}^{(d+1)}, \\ \bar{\Gamma}_f \subset \bar{\Gamma}_g + r \bar{B}^{(d+1)} \text{ and } \bar{\Gamma}_g \subset \bar{\Gamma}_f + r \bar{B}^{d+1} & \Rightarrow \quad d_{\mathscr{H}}(f,g) \leqslant 2r. \end{split} \tag{2.6}$$

For our results on $d_{\mathscr{H}}$ -convergence of $\mathscr{F}^{-1}\overline{\mathscr{F}}_{M}f$ to f we need the following two facts.

LEMMA 2.2. Let f be a bounded function on \mathbb{R}^d ; let $a \in \mathbb{R}^d$, r > 0 and put

$$\lambda := \inf_{\|x - a\| < r} f(x), \qquad \mu := \sup_{\|x - a\| < r} f(x).$$

Then for every $t \in (\lambda - r, \mu + r)$ *we have*

$$(a, t) \in \overline{\Gamma}_t + r\overline{B}^{(d+1)}$$
.

Proof. Put $B_r(a):=\{x\in\mathbb{R}^d:\|x-a\|< r\}$. Let $t\in(\lambda-r,\mu+r)$. Choose a number s in the interval $[t-r,t+r]\cap(\lambda,\mu)$. Then the sets $X_-:=\{x\in B_r(a):f(x)\leqslant s\}$ and $X_+:=\{x\in B_r(a):f(x)\geqslant s\}$ both are nonempty. There exists a point z of $B_r(a)$ that lies in the closure of both X_- and X_+ . Choose a sequence $x_1,\ x_2,\dots$ in X_- , converging to z and such that $s_-:=\lim f(x_n)$ exists. Then $s_-\leqslant s$ and (z,s_-) lies in the closure of Γ_f , hence in $\overline{\Gamma}_f$. Similarly, there is an $s_+\geqslant s$ with $(z,s_+)\in\overline{\Gamma}_f$. Thus, $(z,s)\in\overline{\Gamma}_f$ and

$$(a, t) \in (z, s) + r\overline{B}^{(d+1)} \subset \overline{\Gamma}_f + r\overline{B}^{(d+1)}$$
.

LEMMA 2.3. Let f, g be bounded functions on \mathbb{R}^d . Let r > 0 and

$$\Gamma_f \subset \overline{\Gamma}_\sigma + r\overline{B}^{(d+1)}$$
.

Then

$$\bar{\Gamma}_f \subset \bar{\Gamma}_\sigma + r\bar{B}^{(d+1)}$$
.

Proof. Let $(a, t) \in \overline{\Gamma}_f$. First, take any $\varepsilon > 0$. Put

$$\lambda := \inf \{ g(z) \colon z \in B_{r+2\varepsilon}(a) \}, \qquad \mu := \sup \{ g(z) \colon z \in B_{r+2\varepsilon}(a) \},$$

 $B_{r+2\varepsilon}(a)$ being the open ball in \mathbb{R}^d with center at a and radius $r+2\varepsilon$. (a,t) lies in the closure of $\Gamma_{\underline{f},l}$, so there is an $x\in\mathbb{R}^d$ with $\|x-a\|<\varepsilon$, $t< f(x)+\varepsilon$. There is a $(y,s)\in\overline{\Gamma}_g$ such that $\|x-y\|\leqslant r$ and $|f(x)-s|\leqslant r$. As (y,s) lies in the closure of $\Gamma_{g,l}$, there is a $z\in\mathbb{R}^d$ with $\|y-z\|<\varepsilon$, $s< g(z)+\varepsilon$. Then $\|z-a\|< r+2\varepsilon$ and $t< g(z)+r+2\varepsilon\leqslant \mu+r+2\varepsilon$.

Similarly, $t > \lambda - r - 2\varepsilon$. Thus, by Lemma 2.2,

$$(a, t) \in \overline{\Gamma}_g + (r + 2\varepsilon) \ \overline{B}^{(d+1)}$$

The above formula is valid for all $\varepsilon > 0$. Then, by compactness and because $\bar{\Gamma}_g$ is closed,

$$(a, t) \in \overline{\Gamma}_g + r\overline{B}^{(d+1)}$$
.

3. THE PROBLEM

Let f be an integrable function on \mathbb{R} and let \mathscr{F} , \mathscr{F}^{-1} , \mathscr{F}_m , $\overline{\mathscr{F}}_M$ be as in the Introduction. Then for all M>0 and $a\in\mathbb{R}^d$ we obtain

$$(\mathscr{F}^{-1}\overline{\mathscr{F}}_{M}f)(a) = (2\pi)^{-d} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(x) e^{i\langle x, t \rangle}$$

$$\times \prod_{k=1}^{d} \left(1 - \frac{|t_{k}|}{M}\right)^{+} e^{-i\langle a, t \rangle} dx dt.$$
(3.1)

The substitution $x = a + \frac{y}{M}$, t = Ms yields

$$(\mathcal{F}^{-1}\overline{\mathcal{F}}_{M}f)(a) = (2\pi)^{-d} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f\left(a + \frac{y}{M}\right)$$

$$\times \prod_{k=1}^{d} (1 - |s_{k}|)^{+} e^{i\langle y, s \rangle} dy ds. \tag{3.2}$$

Thus,

$$(\mathscr{F}^{-1}\overline{\mathscr{F}}_{M}f)(a) = \int_{\mathbb{R}^{d}} f\left(a + \frac{x}{M}\right) S(x) dx, \tag{3.3}$$

where, for all $x \in \mathbb{R}^d$,

$$S(x) := (2\pi)^{-d} \int_{\mathbb{R}^d} \prod_{k=1}^d (1 - |s_k|)^+ e^{i\langle x, s \rangle} ds$$

$$= (2\pi)^{-d} \prod_{k=1}^d \int_{\mathbb{R}} (1 - |s_k|)^+ e^{ix_k s_k} ds_k$$

$$= \prod_{k=1}^d \sigma(x_k), \tag{3.4}$$

the function $\sigma: \mathbb{R} \to \mathbb{R}$ being defined by

$$\sigma(\xi) := \begin{cases} \frac{1}{\pi} \frac{1 - \cos \xi}{\xi^2} & \text{if } \xi \neq 0, \\ \frac{1}{2\pi} & \text{if } \xi = 0. \end{cases}$$
 (3.5)

Formula (3.4) determines a continuous nowhere negative function S on \mathbb{R}^d whose integral is 1.

The subject of our investigation is convergence of $\mathscr{F}^{-1}\overline{\mathscr{F}}_M f$ to f for bounded integrable functions f. A glance at (3.3), however, shows that it makes good sense to put the problem more generally. In fact, for any bounded measurable function f on \mathbb{R}^d , not necessarily integrable, we define functions f_M , M > 0, by

$$f_{M}(a) := \int_{\mathbb{R}^{d}} f\left(a + \frac{x}{M}\right) S(x) dx, \qquad a \in \mathbb{R}^{d}$$
 (3.6)

and we will consider convergence of f_M to f as M tends to infinity.

We will frequently use the following estimates.

LEMMA 3.1.

$$0 \leqslant S(x) \leqslant (2\pi)^{-d}, \qquad x \in \mathbb{R}^d. \tag{3.7}$$

$$\int_{\|x\| > r} S(x) \, ds \leqslant \frac{2d^2}{r}, \qquad r > 0. \tag{3.8}$$

Proof of (3.8). If $x = (x_1, ..., x_d) \in \mathbb{R}^d$ and $|x_k| \le r/d$ for k = 1, ..., d, then $||x|| \le r$. Hence, in the terminology of (3.4) and (3.5),

$$1 - \int_{\|x\| \geqslant r} S(x) \, dx = \int_{\|x\| \leqslant r} \left(\prod_{k=1}^{d} \sigma(x_k) \right) dx$$

$$\geqslant \left(\int_{-r/d}^{r/d} \sigma(\xi) \, d\xi \right)^d$$

$$= \left(1 - 2 \int_{r/d}^{\infty} \sigma(\xi) \, d\xi \right)^d$$

$$\geqslant 1 - d \cdot 2 \int_{r/d}^{\infty} \sigma(\xi) \, d\xi$$

$$\geqslant 1 - d \cdot 2 \int_{r/d}^{\infty} \frac{2}{\pi \xi^2} \, d\xi$$

$$= 1 - \frac{4d^2}{\pi r} \geqslant 1 - \frac{2d^2}{r}. \quad \blacksquare$$
 (3.9)

For a given function f, in order to show that $d_{\mathscr{H}}(f_M, f) \to 0$ $(M \to \infty)$, one has to find functions α and β on $(0, \infty)$ such that $\alpha(M) \to 0$ and $\beta(M) \to 0$ $(M \to \infty)$, whereas, for all M,

$$\overline{\varGamma}_{f_{M}} \subset \overline{\varGamma}_{f} + \alpha(M) \; \overline{B}^{(d+1)}, \qquad \overline{\varGamma}_{f} \subset \overline{\varGamma}_{f_{M}} + \beta(M) \; \overline{B}^{(d+1)}.$$

Curiously, for α we need no condition on f (except for boundedness and measurability). In fact, one may always take $\alpha(M) := d(\Delta f)^{1/2} M^{-1/2}$, where

$$\Delta f := \sup_{x, y \in \mathbb{R}^d} |f(x) - f(y)|.$$

Lemma 3.2. Let f be a bounded measurable function on \mathbb{R}^d . Then

$$\overline{\varGamma}_{f_{M}} \subset \overline{\varGamma}_{f} + d\sqrt{\varDelta f} \cdot M^{-1/2} \overline{B}^{(d+1)} \qquad (M > 0).$$

Proof. Put $K := d\sqrt{\Delta f}$. Without restriction, assume that all values of f lie in the interval $[-\frac{1}{2}\Delta f, \frac{1}{2}\Delta f]$. Let M > 0.

Take $a \in \mathbb{R}^d$. Putting

$$\mu := \sup\{ f(x) : ||x - a|| < KM^{-1/2} \}$$

we have $f(a + xM^{-1}) \le \mu$ if $||x|| < KM^{1/2}$ and $f(a + xM^{-1}) \le \frac{1}{2} \Delta f$ for all x. Thus, with (3.8),

$$\begin{split} f_{M}(a) \leqslant & \int_{\|x\| < KM^{1/2}} \mu S(x) \; dx + \int_{\|x\| \geqslant kM^{1/2}} \left(\frac{1}{2} \, \varDelta f\right) S(x) \; dx \\ < & \mu + \frac{1}{2} \, \varDelta f \frac{2d^{2}}{KM^{1/2}} = \mu + KM^{-1/2}. \end{split}$$

Similarly,

$$f_{M}(a) > \lambda - KM^{-1/2},$$

where

$$\lambda := \inf\{f(x) : \|x - a\| < KM^{-1/2}\}.$$

By applying Lemma 2.2 and observing that f_M is continuous, we find

$$\overline{\Gamma}_{f_M} = \Gamma_{f_M} \subset \overline{\Gamma}_f + KM^{-1/2}\overline{B}^{(d+1)}.$$

We have $d_{\mathscr{H}}(f_M, f) \leq ||f_M - f||_{\infty} \to 0 \ (M \to \infty)$ if f is (bounded and) uniformly continuous. Simple continuity is not sufficient, as is apparent from a rapidly oscillating function such as $x \mapsto \sin x^2 (x \in \mathbb{R})$.

The next theorem describes the functions f vanishing at infinity for which $d_{\mathscr{H}}(f_M, f) \to 0 \ (M \to \infty)$, but without an estimate for the speed of convergence. (An example is the indicator of a bounded regular open set.)

THEOREM 3.3. Let $f: \mathbb{R}^d \to \mathbb{R}$ be bounded and measurable and such that $\lim_{\|x\| \to \infty} f(x) = 0$. Then the following conditions are equivalent.

- (i) If $a \in \mathbb{R}^d$ and α , $\beta \in \mathbb{R}$ are so that $\alpha \leqslant f \leqslant \beta$ a.e. on some neighborhood of a, then $\alpha \leqslant f(a) \leqslant \beta$.
 - (ii) $\lim_{M\to\infty} d_{\mathcal{H}}(f_M, f) = 0.$

Proof. (i) \Rightarrow (ii). Let $\varepsilon > 0$. In view of Theorem 3.2, Formula (2.6) and Lemma 2.3 we only have to show that

$$\Gamma_f \subset \Gamma_{f,r} + \varepsilon \overline{B}^{(d+1)}$$
 if M is large enough. (*)

Choose R > 0 such that $||x|| \le R$ for every x with $|f(x)| \ge \frac{1}{4}\varepsilon$.

If $a \in \mathbb{R}^d$ and ||a|| > R + 1, then $|f(a + y)| \le \frac{1}{4}\varepsilon$ as soon as $||y|| \le 1$, so that for all M

$$|f_M(a)| \leq \frac{1}{4}\varepsilon + \int_{\|x\| \geq M} \left| f\left(a + \frac{x}{M}\right) \right| S(x) \ dx \leq \frac{1}{4}\varepsilon + \|f\|_{\infty} \frac{2d^2}{M},$$

whence

$$|f_M(a)-f(a)| \leqslant \frac{1}{4}\varepsilon + \|f\|_{\infty} \frac{2d^2}{M} + \frac{1}{4}\varepsilon.$$

It follows that for $M \ge 4 \|f\|_{\infty} 2d^2 \varepsilon^{-1}$:

$$\{(a, f(a)) : ||a|| > R + 1\} \subset \Gamma_{f_M} + \varepsilon \overline{B}^{(d+1)}.$$
 (3.10)

Cover $\{a \in \mathbb{R}^d : ||a|| \le R+1\}$ by finitely many open sets $U_1, ..., U_N$ with diameters smaller than ε . For n=1, ..., N let

$$s_n := \inf\{s : f \leqslant s \text{ a.e. on } U_n\}.$$

Let X be the Lebesgue set of f. By a d-dimensional version of [1], 6.C, $f_M \to f$ pointwise on X. Furthermore, the complement of X is negligible. Thus, for each n we can choose an x_n in $U_n \cap X$ with $f(x_n) > s_n - \varepsilon/2$, and there is an M_1 such that $f_M(x_n) > s_n - \varepsilon$ for all $M \ge M_1$ and $n \in \{1, ..., N\}$. If $a \in U_n$ and $M \ge M_1$, then (using (i)):

$$f(a) \leq s_n < f_M(x_n) + \varepsilon$$
.

Thus,

if
$$||a|| \le R+1$$
 and $M \ge M_1$, then $f(a) < \sup \{f_M(x): ||x-a|| < \varepsilon\} + \varepsilon$.

Similarly, there is an M_2 for which

if
$$||a|| \le R+1$$
 and $M \ge M_2$, then $f(a) > \inf\{f_M(x): ||x-a|| < \varepsilon\} - \varepsilon$.

If follows from Lemma 2.2 that for all sufficiently large M:

$$\{(a, f(a)): ||a|| \leq R+1\} \subset \Gamma_{f_M} + \varepsilon \overline{B}^{(d+1)}. \tag{3.11}$$

Together with (3.10), this is (*).

(ii) \Rightarrow (i). Suppose $a \in \mathbb{R}^d$, r > 0, $\beta \in \mathbb{R}$, and $f \leqslant \beta$ a.e. on $B_{2r}(a)$. Let $\varepsilon > 0$; it suffices to prove $f(a) \leqslant \beta + 2\varepsilon$. Choose M so that $d_{\mathscr{H}}(f_M, f) < \min\{r, \varepsilon\}$ and $2d^2 \|f\|_{\infty} < Mr\varepsilon$. Then there is a $b \in B_r(a)$ with $|f_M(b) - f(a)| < \varepsilon$. As $f \leqslant \beta$ a.e. on $B_r(b)$, we have

$$f_{M}(b) \leqslant \int_{\|x\| < Mr} \beta S(x) \ dx + \int_{\|x\| \geqslant Mr} \|f\|_{\infty} S(x) \ dx \leqslant \beta + \varepsilon,$$

whence $f(a) \leq \beta + 2\varepsilon$.

4. THE CONDITION ON *f*

A function f on \mathbb{R}^d is said to be *uniformly locally Lipschitz* if the following is true:

There exist positive numbers h, α, C with the following property: for every $a \in \mathbb{R}^d$ there is a circular cone Σ_a with vertex a, height h and angle α , for which $|f(x) - f(y)| \leq C ||x - y||, x, y \in \Sigma_a$. (4.1)

Lemma 4.1. Every uniformly locally Lipschitz function on \mathbb{R}^d is Lebesgue measurable.

Proof. Let $f: \mathbb{R}^d \to \mathbb{R}$ be uniformly locally Lipschitz. Let \mathscr{A} be a maximal disjoint collection of subsets A of \mathbb{R}^d that have the properties:

- (1) A is measurable and has positive Lebesgue measure;
- (2) the restriction of f to A is continuous.

Let X be the complement of the union of \mathscr{A} . It follows from (1) that \mathscr{A} is countable, so X is measurable and (by (2)) we are done if it is negligible. Suppose it is not. Choose a density point a of X. There is a circular cone Σ , containing a, and such that the restriction of f to Σ is Lipschitz. Choose $c \in \mathbb{R}^d$ and r > 0 such that the ball $B_r(a+c)$ is contained in Σ . By the convexity of Σ , for every $\varepsilon \in (0, 1]$ we have $B_{\varepsilon r}(a+\varepsilon c) \subset \Sigma$.

As a is a density point of X, for some $\varepsilon \in (0, 1]$ we have (m being Lebesgue measure):

$$\begin{split} m(B_{\varepsilon r + \varepsilon \parallel c \parallel}(a) \cap X) > & \left(1 - \left(\frac{r}{r + \parallel c \parallel}\right)^{d}\right) m(B_{\varepsilon r + \varepsilon \parallel c \parallel}(a)) \\ = & m(B_{\varepsilon r + \varepsilon \parallel c \parallel}(a)) - m(B_{\varepsilon r}(a + \varepsilon c)) \\ = & m(B_{\varepsilon r + \varepsilon \parallel c \parallel}(a) - B_{\varepsilon r}(a + \varepsilon c)). \end{split}$$

This is possible only if $B_{\varepsilon r}(a+\varepsilon c) \cap X$ has positive measure. But $B_{\varepsilon r}(a+\varepsilon c) \subset \Sigma$, so f is Lipschitz on $B_{\varepsilon r}(a+\varepsilon c) \cap X$. This contradicts the maximality of \mathscr{A} .

Theorem 4.2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be bounded and uniformly locally Lipschitz. Then

$$d_{\mathscr{H}}(f, f_M) = \mathcal{O}(M^{-1/2}), \qquad M \to \infty.$$

Proof. Take C, $\Sigma_a(a \in \mathbb{R}^p)$ as in (4.1). Write $\Sigma := \Sigma_0$; then every Σ_a is isometric to Σ . Let r > 0 be such that Σ contains a ball with radius r.

Because of Theorem 3.2 and Lemma 2.3, it is enough to find a number K with

$$\Gamma_f \subset \Gamma_{f_M} + KM^{-1/2}\overline{B}^{(d+1)}$$
 if $M > r^{-2}$. (*)

We show that this is satisfied by:

$$K:=\max\{\,K_1,\,K_2\}\,,\qquad K_1:=C\left(\frac{\operatorname{diam}\,\varSigma}{r}+1\right)+2d^2\varDelta f,\qquad K_2:=\frac{\operatorname{diam}\,\varSigma}{r}\,.$$

Take $a \in \mathbb{R}^d$ and $M > r^{-2}$. Choose $c \in \mathbb{R}^d$ so that $B_r(a+c) \subset \Sigma_a$. Setting $\delta := r^{-1}M^{-1/2}$ we have $0 < \delta < 1$, whence

$$B_{M^{-1/2}}(a+\delta c) = B_{\delta r}(a+\delta c) \subset \Sigma_a$$

and

$$|f(a) - f_{M}(a + \delta c)|$$

$$\leq \int_{x \in \mathbb{R}^{d}} \left| f(a) - f\left(a + \delta c + \frac{x}{M}\right) \right| S(x) dx$$

$$\leq \int_{\|x\| < M^{1/2}} C \left\| \delta c + \frac{x}{M} \right\| S(x) dx + \int_{\|x\| \geqslant M^{1/2}} (\Delta f) S(x) dx$$

$$\leq C \left(\delta \cdot \operatorname{diam} \Sigma + \frac{1}{\sqrt{M}} \right) + (\Delta f) \cdot \frac{2d^{2}}{\sqrt{M}}$$

$$= K_{1} M^{-1/2}.$$

As
$$||a - (a + \delta c)|| \le \delta \cdot \text{diam } \Sigma = K_2 M^{-1/2}$$
, we have (*).

THEOREM 4.3. Suppose $X_1, ..., X_N$ are subsets of \mathbb{R}^d whose union is a ball B and assume that each X_n either is convex with nonempty interior or has a smooth boundary. Let $f: \mathbb{R}^d \to \mathbb{R}$ be Lipschitz on each X_n and vanish identically off B. Then

$$d_{\mathscr{H}}(f, f_M) = \mathcal{O}(M^{-1/2}), \qquad M \to \infty.$$

Proof. Let X_0 be the complement of B; then X_0 has a smooth boundary. We are done if for every $n \in \{0, 1, ..., N\}$ there exist h_n , $\alpha_n > 0$ with the property that every point of X_n is the vertex of a circular cone that has height h_n and angle α_n , and is contained in X_n . It follows readily from the proof of Theorem 5.3 in [4] that such h_n and α_n exist in case X_n has a smooth boundary. If X_n is convex and has nonempty interior, choose a closed ball $\overline{B}_r(c)$ in X_n and let R be the diameter of X_n ; for every a in X_n

we see that X_n contains the convex hull of $\{a\} \cup \overline{B}(c)$, and thereby a cone with vertex a, height r and angle arc sin $R^{-1}r$.

For indicator functions of bounded sets, Theorem 4.2 is optimal in the following sense. Let X be a measurable subset of \mathbb{R}^d that is bounded, nonempty, and let f be its indicator. Then

$$d_{\mathscr{H}}(f, f_M) \geqslant \frac{1}{10} M^{-1/2}, \qquad M \in \mathbb{N}.$$

Proof. By translation invariance we may assume

$$X \subset [0, \infty) \times \mathbb{R}^{d-1}$$
, the closure of X contains 0.

Take $M \in \mathbb{N}$ and $\delta > d_{\mathscr{H}}(f, f_M)$. As (0, 1) lies in the closure of Γ_f , there must exist an $a \in \mathbb{R}^d$ with $\|(0, 1) - (a, f_M(a))\| < \delta$; then certainly $\|a\| < \delta$ and $1 - f_M(a) < \delta$. If g is the indicator of $(0, \infty) \times \mathbb{R}^{d-1}$, then $g \le 1 - f$, whence $g_M \le 1 - f_M$. By (3.3), applied to g, one sees that

$$g_{M}(a) = \int_{-M\alpha}^{\infty} \sigma(\xi) d\xi,$$

where α is the first coordinate of a. As $-\alpha \leq \delta$, one has

$$\delta > 1 - f_{M}(a) \geqslant g_{M}(a) = \int_{-M\alpha}^{\infty} \sigma(\xi) \ d\xi \geqslant \int_{M\delta}^{\infty} \sigma(\xi) \ d\xi.$$

From this, it is not hard to obtain $M\delta^2 \ge 10^{-2}$, i.e., $\delta \ge 10^{-1}M^{-1/2}$.

REFERENCES

- 1. R. R. Goldberg, "Fourier Transforms," Cambridge Univ. Press, Cambridge, UK, 1961.
- 2. J. L. Kelley, "General Topology," Springer-Verlag, Berlin/Heidelberg/New York, 1975.
- A. van Rooij and F. H. Ruymgaart, Convergence in the Hausdorff metric of estimators of irregular densities using Fourier-Cesàro approximation, Statist. Probab. Lett. 39 (1998), 179–184.
- A. van Rooij and F. H. Ruymgaart, Hausdorff distance and Fourier integrals, Report 9703, Department of Mathematics, Catholic University, Nijmegen, The Netherlands.